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ABSTRACT 
 
In this work we explore the relationship between environmental exposures and health outcomes 

as mitigated by differential susceptibility in individuals or populations.  Specifically, we address 

the question “Can biomarkers enable us to understand and quantify better the population burden 

of disease and health effects attributable to environmental exposures?”  We use a case-study 

approach to develop the thesis that biomarkers offer a pathway to disaggregation of health effects 

into specific, if multiple, risk factors.  In particular, we offer the point of view that a series or 

array of biomarkers, including biomarkers of exposure, biomarkers of susceptibility, and 

biomarkers of effect used in concert offer the best means by which to effect this disaggregation.  

We commence our discussion by developing the characteristics of an ideal biomarker, and then 

give some examples of commonly used biomarkers to show the strengths and weaknesses of 

current usage.  We propose a research agenda suggesting simultaneous collection of multiple 

biomarkers and evaluation of multiple effects in an effort to develop fuller understanding of the 

exposure-to-dose continuum.  This is followed by more detailed case-study assessment outlining 

the state-of-the-science for three different disease outcomes- asthma in children, neurobehavioral 

effects associated with heavy metal exposure, and an ecosystem approach focusing on persistent 

organic pollutants.  We complete our work with some recommendations regarding the future use 

of biomarkers and areas for continued development.  
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Using Biomarkers to Inform Cumulative Risk Assessment 
 

INTRODUCTION 

The United States Environmental Protection Agency (EPA) defines cumulative risk as 

the combined risks from aggregate exposure to multiple stressors (USEPA 2003c), and 

cumulative risk assessment as an analysis, characterization, and possible quantification of these 

risks.  In this and companion papers (Callahan and Sexton. 2006), we explore approaches for 

assessing the effects of stressors from multiple sources (Menzie et al. 2006), the effects of 

differential vulnerability in populations and individuals (deFur et al. 2006), and the effects 

associated with differential exposure (Sexton and Hattis 2006).   

This paper provides an evaluation of whether and how biomonitoring data can inform 

cumulative risk assessment. We examined the potential for human and ecosystem biomarkers to 

help us understand cumulative health risks from the interactions between environmental 

exposures and host susceptibility factors.  We used case studies to address the question:  

• Can biomarkers enable us to understand and quantify better the population burden of 

disease and health effects attributable to environmental exposures?”   

Further, we present examples from the current literature on the availability and uses of 

biomarkers to explore two other questions:   

• Under what circumstances can biomarkers be used to disaggregate disease burden into 

specific risk factors?  For example, when and how can biomarkers be linked to specific 

diseases and can a specific biomarker or set of biomarkers be useful for mapping disease 

to exposure?   
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• When and how can biomarkers be used to infer the source and magnitude of exposure 

among a set of competing sources and pathways?  

The latter question centers on the inverse problem of disaggregating cumulative exposures into 

their component parts.  This is a difficult problem that is only now receiving attention in the 

scientific community.   

Biomarkers may offer improved understanding of the pathway between the causative 

agents, as indicated by exposure measures, and the health outcome.  There are many challenges 

and limitations.  What are the public health implications of widespread low-level population 

exposures that can now be inferred from biological or ecological measurements?  Disaggregating 

the health effects and understanding the health risk from these exposures will require new 

perspectives on the environmental health paradigm.  Ideally, biomonitoring will become a 

foundation of an environmental public health tracking system that includes identification of 

environmental sources, exposures, and related population health outcomes (Barr et al. 2005).   

Combining biomonitoring results with population health surveillance offers opportunities for 

understanding the relationship between cumulative exposures and population, community, and 

individual risk.   

 

BIOMARKERS AS A POSSIBLE BASIS FOR ENVIRONMENTAL REGULATION 

Medical surveillance studies of disease burdens provide insight on cumulative impacts 

from multiple risk factors, but do not provide a framework to attribute risk factors to disease.  

This attribution is necessary for regulation.  The problem is finding a measurable basis for 

regulation of disease-causing agents that provides a quantitative or qualitative link or links 
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between disease and its causative agent(s) in the environment.  Biomarkers in human and 

ecological populations may provide this basis.   

We define biomarkers as measures reflecting an interaction between a biological system 

and a chemical, biological, or physical environmental agent.  The focus is on chemical agents 

although the methods developed are applicable in other areas.  The literature usually considers 

three classes of biomarkers (NRC 1987; WHO 1993): Biomarkers of exposure;  Biomarkers of 

effect; and, Biomarkers of susceptibility. The first two link exposures with health outcomes and 

can provide the basis for linking biological effect and exposure to environmental contamination.    

The third refers to a modifier that influences the magnitude of the effect given a fixed magnitude 

of the driver.  All three types may be used to identify vulnerable individuals or populations. 

 

Characteristics of an Ideal Biomarker 

We used the characteristics of an ideal biomarker to evaluate the current state of research, 

guide the use of specific biomarkers, and to suggest future research.  The literature on the criteria 

for defining, developing, and validating an ideal biomarker (Groopman and Kensler 2005; 

Metcalf and Orloff 2004; Schulte and Mazzuckelli 1991; WHO 1993) suggests eight criteria for 

evaluating a biomarker’s usefulness in cumulative risk assessment.  Ideal biomarkers would:  

Be Persistent - have a long half-life;    

Be Easily Collected - collected using non-invasive procedures that present only minor procedural 

difficulties in collection, transport, storage, and analysis;  

Be Linked to Disease - display exposure, indicate effect, and establish a link between them;  
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Have a Large Sample - to examine the distribution of the biomarker in the population and to 

establish links between the biomarker and effect;    

Have Broad Spatial Distribution and Temporal Occurrence - a complete spatial and temporal 

understanding of the exposure/health outcome distribution;  

Have Sensitivity - sufficiently sensitive to give information on differences in populations from 

different regions and over time scales of interest, e.g., seasonal or long-term, secular trends.   

Favor Measurement of Parent Compounds over Metabolites - The measurement of parent 

compound gives a direct and unambiguous measure of exposure to the contaminant of interest.  

 Table 1 presents an outline of considerations for biomarkers including a hypothetical 

biomarker that illustrates the criteria.  Table 1 shows that even commonly used biomarkers are 

far from ideal, but that combinations of biomarkers for the same compound may give 

complementary information.   

 

AN ARRAY OF BIOMARKERS IN CUMULATIVE RISK ASSESSMENT 

While a biomarker of exposure may be appropriate in assessing exposures over one time 

scale, health outcomes, and thus risk, may be associated with time scales markedly different 

from those being assessed.  Further, exposure to a specific compound – a biomarker of exposure 

– may be insufficient to assess effects; a biomarker of effect may be needed.  Finally, if one is 

concerned about large populations and the health impact they are likely to experience, then one 

must be concerned about differential susceptibility in the population; a biomarker of 

susceptibility is needed.  Thus the “ideal” biomarker may not exist.   
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Application of Array Concept - Organophosphate Pesticides 

It may be possible to approach the ideal biomarker functionally by applying an array of 

biomarkers, each of which provides some of the ideal characteristics.  For example, 

organophosphate (OP) pesticides have widely varying chemical structures but share a common 

toxic mechanism of action: acetylcholinesterase inhibition.  While exposure to organophosphate 

pesticides has been linked to neurological effects, this primary mechanism of action is actually a 

short-term, or early, effect (Figure 1.)   

Biomarkers of exposure to these compounds exist.  Dialkyl phosphates (Barr et al. 2004) 

and organophosphate-specific (or near-specific) biomarkers such as 3,5,6-trichloro-2-pyridinol 

(TCPy) (MacIntosh et al. 1999) offer two approaches to assessing organophosphate pesticide 

exposure.  The non-specific biomarker for organophosphate pesticides, dialkyl phosphates, may 

offer insight into the general exposure to these pesticides, and a pathway to cumulative risk 

assessment, while the OP-specific biomarker gives insight into exposure to specific members of 

this class, e.g., chlorpyrifos (and chlorpyrifos-methyl) and some insight into metabolic processes.  

Measurement of the compound-specific biomarker, e.g., TCPy, can give information only on 

exposure to the compounds from which it is derived.  Further, interpretation is complicated due 

to levels of TCPy in exposure media. While the dialkyl phosphates measure gives information on 

all compounds of this general class, each member of the organophosphate class has different 

inhibition characteristics.  The measure of the non-specific metabolites does not give information 

on the specific compound from which they came, reducing their utility.   

Measuring acetylcholinesterase inhibition, a biomarker of effect, directly may add some 

insight into susceptibility but it provides no information on the cause of inhibition.  This 
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discussion suggests that the simultaneous collection of all three biomarkers is likely to lead to 

substantially more information than collection of the individual markers alone. 

 

 

A FRAMEWORK FOR APPLYING AN ARRAY OF BIOMARKERS AND OTHER 

METRICS 

 

The framework presented in Figure 1 provides the conceptual basis for considering an 

array of biomonitoring data and other health metrics in assessment of cumulative exposure and 

risk.  The receptor may be a human being, an individual organism, a population, a community, or 

an ecosystem.  Multiple sources result in a range of environmental conditions with a range of 

temporal and spatial exposures to multiple stressors (See (Sexton and Hattis 2006).)  These 

multiple exposures at varying times may be required to induce any one outcome.   

The framework uses:  

• Biomarkers of susceptibility to characterize the receptor (e.g. information on genetics, 

developmental or life stage, and health status) (See (deFur et al. 2006));  

• Biomarkers of effect to characterize the potential for adverse outcomes (e.g. may range in 

scale from early effects detectable at a molecular level to manifestations of the full 

disease state); and  

• Biomarkers of exposure to characterize direct impact of stressors on the receptor (See 

(Menzie et al. 2006).)  Linking these internal markers of exposure to associated chemical, 

biological, physical, or psychosocial stressors will often require consideration of 
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additional information on conditions of the environment and interaction of the receptor 

with the environment.   

 

Applying the Framework 

Multiple Sources 

Even for a specific contaminant, there is the potential for multiple sources and pathways 

of exposure.  For example, in the case of organophosphate pesticides, a receptor can be exposed 

through various sources through ingestion of agricultural crops or direct contact from local 

application for pest control.  Each of these sources results in environmental contamination, but 

the movement through the environment to produce the resulting exposure is substantially 

different.  One may attempt to monitor the food supply, house dust, soil, and air concentrations 

(the exposure) and infer dose to the receptor through a modeling process that estimates intake to 

the body based on the amount of specific compound found in each of the media.  However, such 

calculations are difficult and results depend upon the model selected.  

Factors Influencing Effects 

Three factors of interest influence the effects observed on the receptor: genetic 

susceptibility, developmental stage, and health status (Figure 1).  Genetic susceptibility, for 

example through differential metabolism of OP pesticides among various individuals, 

communities, or populations may result in different effects for a given exposure.  Developmental 

stage is an important determinant of the effects of exposure.  Perhaps the most visible case of 

such effects occurred in the so-called “thalidomide babies” born to mothers who took this drug in 

the early 1960s.  Developmental stage was critical; those who were exposed to thalidomide at a 
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particular stage of gestation suffered from the exposures while others exposed later in gestation, 

or not at all, did not experienced any such effects.  On the effects side (the right part of Figure 1) 

there are various levels of outcomes ranging from often sub-clinical “early effects,” through 

altered structure and function, leading to a measured adverse outcome.  It is important to note 

that a dose from a single chemical may lead to multiple early effects, altered structure and 

functions, and outcomes.  For example, exposure to lead may lead to cognitive defects, 

neurological effects, and altered blood pressure status.  Thus, one progresses from a 

multifactorial source/exposure/dose relationship, modified by receptor status with respect to 

development, susceptibility, and health, to multifactorial outcomes. 

Health Status of the Receptor 

Health status of the receptor can also affect the outcome of a given exposure.  Those with 

compromised immune systems due to disease status, or those with, for example, little excess 

pulmonary capacity, may be more adversely affected to a given exposure than those not suffering 

from these conditions.  Similarly, an ecosystem under stress from, say, ozone exposure, may 

respond differently to herbicides than a healthier ecosystem (Menzie et al. 2006, Sexton and 

Hattis 2006).  The key question becomes: How do we think about the appropriate array of 

biomarkers needed to assess fully the outcomes of interest for the specific receptor? 

 

 

SETTING A RESEARCH AGENDA  

 

The review of biomarker data indicates that there probably is no single, ideal biomarker (e.g., 

Table 1), and the discussion of using an array of biomarkers to assess the cumulative effects of 
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various contaminants, poses various established uncertainties (e.g., a full suite of biomarkers – 

exposure, susceptibility, and effect) may not exist for a specific compound.  However, we 

believe that an integration of the characteristics of an ideal biomarker with existing knowledge of 

the specific difficulties surrounding a specific outcome of concern can offer research 

recommendations.  This is a simple matrix that matches a set of evaluation criteria (the criteria 

that define an ideal biomarker) to the current state of knowledge (an array of existing biomarkers 

and other health criteria).  One can use that knowledge to fill the matrix and specify the 

uncertainties associated within each match-up.  Figure 1 present the essentials of the matrix.    At 

a minimum, the questions addressed in each element should include:   

 

• Does the biomarker have the desired criteria? 

• Are there multiple sources that affect the biomarker? 

• Is the biomarker indicative of genetic status? 

• Is the biomarker indicative of developmental stage? 

• Is the biomarker indicative of health status? 

• Are there many potential outcomes (e.g., multiple early effects, altered structure and 

functions, and changed health status)? 

 

 The answers to these questions, informed by the ideal criteria, will produce a coherent 

research agenda vulnerable to prioritization.  
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BIOMARKERS AND DISEASE OUTCOMES - ILLUSTRATIVE CASE STUDIES 

To this point, the focus has been on the exposure side, approaching biomarkers as a 

method of assessing exposure experienced by a receptor to some environmental contaminant.  

We now change the focus to outcome.  A question is posed: Can the presence of certain 

biomarkers in the receptor aid in evaluating the source of a particular health outcome?  Three 

cases studies are presented on disease outcomes of concern: asthma, neurobehavioral effects, and 

endocrine disruption.  All are complex diseases with many different manifestations.  All have 

multiple biomarkers including those of exposure, effect, and susceptibility that can be used 

singularly and in combination to assess the contaminant sources affecting the disease and the 

disease outcome.  We propose to evaluate multiple biomarkers simultaneously, the main 

proposal advocated in this work.  For one of these cases, asthma, the matrix in Table 2 is applied 

to assess the status of each associated biomarker relative to the ideal.  

 

Asthma and Asthma Etiology Markers and Effects 

Background 

Asthma and related allergic diseases (ADs) are manifested by numerous environmentally 

related sources, and numerous potential outcomes.  In the United States, recent surveys find a 

16% prevalence of asthma among 14-year old children, with a 200% increase in the rate of 

asthma hospitalizations and a 100% increase in the rate of asthma mortality since the 1970s.  The 

atopic march is the accepted natural history of ADs and refers to a sequence of early 

immunologic and later clinical responses that may appear in young children, persist over years, 

and may continue throughout one’s lifetime (Kulig et. at., 1999).  A series of biomarkers may 
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afford an improved understanding of the effects of various sources on the etiology of these 

related diseases.  Examination of the contaminant sources thought to influence the course of the 

atopic march and the biological markers associated with this process is instructive in light of the 

concepts presented in this paper. 

Sources and Exposures 

There is much evidence to suggest that components of the early childhood indoor and 

outdoor environments are contributing to the increasing prevalence of ADs (Figure 2).  Various 

air borne sources are associated with the etiology of ADs and the specific development of 

asthma.    These include: photochemical and particulate air pollution (Andrae et al. 1988; Diaz-

Sanchez et al. 1997; Lunn et al. 1970; Peterson and Saxon 1996; Ussetti et al. 1984; Ware et al. 

1986); criteria air pollutants, diesel exhaust carbon particles, and pesticides that increase allergic 

sensitization (Behrendt et al. 1997; Emberlin 1995; Knox et al. 1997; MacIntosh et al. 1999; 

Rubbin et al. 1986; Ruffin et al. 1986); and, elevated airborne levels of particulate matter (PM), 

particularly fine aerosol (PM2.5) (Dejmek et al. 1999; Neas et al. 1994; Norris et al. 1999; 

Romieu et al. 1996).   

Individuals living in industrialized societies also tend to spend a larger fraction of time in 

indoor environments that have higher allergen and chemical burdens (Platts-Mills et al. 1996).  

There is some evidence that indoor exposure to volatile organic compounds (VOCs) can be 

related to asthmatic symptoms (Harving et al. 1991).  Among infants exposed to environmental 

tobacco smoke, studies demonstrate that the risks of lower airway disease and recurrent 

wheezing are increased (Arshad and Hide 1992; Murray and Morrison 1990; Wahn and von 

Mutius 2001).  Exposure to household endotoxin may also be important in the development of 

ADs.  There is evidence that high levels of household endotoxin may mitigate the development 
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of ADs before disease onset, but may exacerbate the symptoms of ADs once developed (Gereda 

et al. 2001; Gereda et al. 2000; Park et al. 2001).  

 

Biomarkers of Susceptibility, Exposure, and Effect 

Several biological markers of nascent hypersensitivity exist (Figure 2).  These include 

immunoglobulin E [IgE], Radioallergoabsorbent Test (RAST)-positivity, and T-helper type 2 

[Th2] cytokine pattern predominance, indicative of imbalance in the development of the immune 

system in newborns and young children, and early clinical manifestations of ADs including early 

development of food allergies and atopic dermatitis manifested as skin rashes.  Both genetic and 

environmental factors have been implicated (Miller 2001).  One early marker for atopic 

immunoreactivity in infancy is the presence of IgE antibody to egg or cow’s milk in serum.  The 

first clinical manifestation of atopic immunoreactivity is, typically, atopic dermatitis, with the 

highest incidence during the first three months of life, followed by food allergy (Wahn and von 

Mutius 2001).  Those who develop the early clinical manifestations including food allergies and 

atopic dermatitis, are at higher risk for persistent asthma (Martinez et al. 1995). Thus measure of 

these markers may be viewed as early indicators of altered structure or function (See Figure 2.) 

The combination of the measurement of multiple biomarkers of susceptibility and effect 

coupled with better measures of exposure to multiple pollutants is likely to lead to a more 

complete understanding of the progression of ADs and the increased incidence and prevalence of 

asthma in modern, industrialized societies.  Disaggregation of the effects is still problematic.  

Despite the presence of measures of early effect, few data have been collected that show the path 
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of causality from source, (e.g., criteria pollutants), through biomarker (e.g., Th2 cytokine path 

dominance), to the onset of asthma.   

 

Neurobehavioral Endpoints 

Background 

Several neurobehavioral endpoints have been linked to environmental exposures.  Some 

important known behavioral neurotoxins include mercury and lead. However, making specific 

chemical/exposure links is difficult because the causes of human disease are varied – resulting 

from a mixture of environmental, lifestyle, socio-economic, and genetic factors acting over the 

life time of the individual.   

Examples of Neurobehaviorally Active Substances with Multiple Exposure Pathways (See 

Figure 3) 

Mercury 

Mercury is a neurotoxic substance that can produce a wide range of health effects 

depending on the amount and timing of exposure (Clarkson 1997; Ratcliffe et al. 1996; USEPA 

1997).  Mercury is a naturally occurring element found in the earth’s crust but human activities 

contribute significantly (an estimated 70%) to the amount of mercury circulating in the 

environment (Kyerematen and Vesell 1991).  Because of its persistence and the large and 

distributed number of sources, almost everyone will be exposed to low levels of mercury in air, 

water, or food (USEPA 1997).      
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Mercury is somewhat persistent in human tissues (USEPA 1997).  This makes it feasible 

to assess human exposure using blood, hair, and urine. Concentrations of mercury in maternal 

blood, cord blood, and maternal hair have been used to asses the potential for developmental 

neurobehavioral endpoints, but there are significant inter-individual variability in the relationship 

among blood-to-hair, blood-to-intake, or hair-to-intake ratios (Bartell et al. 2000). In addition to 

hair and cord blood, other biomarkers are emerging.  For example, mercury selectively alters 

porphyrin metabolism in kidney proximal tubule cells, leading to an altered urinary porphyrin 

excretion pattern (Woods 1996) thereby offering a biomarker of effect.  

 

Lead 

Lead is a naturally occurring heavy metal that is widely distributed in the Earth’s crust 

and found in soil, surface water, ground water, and vegetation and animal tissues. The human 

body has no known biological need for lead, but once taken in by ingestion, inhalation, or dermal 

contact, lead behaves like calcium in the body and is stored mostly in the bones with a small 

fraction in the blood.  The levels of lead in the blood reach equilibrium with bone levels, but this 

often take months, even years.  Short term high or low rates of intake can disrupt this equilibrium 

(Chuang et al. 2001).  

Exposures to lead occur in occupational and residential settings.  Children and most 

adults in the US are more likely to experience chronic low-to-moderate-level lead exposure than 

acute, high-level exposure. 

Among the most significant health problems associated with these levels of lead are 

neurological development problems. In adults and children, chronic lower/moderate-level lead 

exposure has been associated with learning deficiencies, memory problems, behavior problems, 
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attention deficit, problems with coordination, anemia, digestive disorders, renal dysfunction, 

abnormal reproductive function, and possible infertility (Needleman and Bellinger 1991).  

The level of lead in the blood is most often used as the measure of the amount of lead in 

the body.   However, blood lead only relates to the lead exposure within the past few months 

Currently available tests are subject to numerous limitations such as unreliability and lack of 

sensitivity for values below a few µg/dL in blood  (See Table 1.) This limitation is significant 

because similar blood lead concentrations have recently been shown to induce irreversible 

neuropsychologic damage in children (Tong et al. 1998).   Like mercury, lead persists in the 

body so that levels in blood, hair, and bone have served as biomarkers of lead exposure.  Lead in 

teeth and bones can be measured with X-rays, but this test is not readily available (See Table 1.)  

One of the factors limiting the progress of lead epidemiology has been the absence of a 

biomarker of long-term exposure. Therefore, considerable effort has been devoted to developing 

methods for the in vivo measurement of lead deposited in bone.  

 

Effects in Children 

The causes of human disease have numerous causative factors that result from a mixture 

of environmental, lifestyle, socio-economic, and genetic factors acting over the life time of the 

individual.  However, in most cases the environment will serve, in varying degrees, to influence 

the initiation, severity and/or progression of disease (SB702 2004).  Children are particularly 

vulnerable to environmental disease because: their bodies are still developing, they are exposed 

to more contaminants on a body-weight adjusted basis, and behaviors such as crawling, putting 

objects in their mouths, and running that can increase their environmental exposures. Among the 
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most serious diseases confronting children in US are neurodevelopmental and behavioral 

disorders.  The manifestation of these diverse effects may arise through exposures to these suites 

of compounds in that similar (and multiple) effects may be noted for exposure to diverse 

compounds in the environment.   

We consider three effects seen in children that may have etiology rooted, at least in part, 

in environmental exposure: Developmental and Reproductive Disorders, Attention Deficit 

Hyperactivity Disorder, and Delinquency.  Examination of these effects in conjunction with 

multiple sources may offer a fruitful pathway for further understanding (see Figure 3.) 

Developmental and Reproductive Disorders- Although chemical exposure may be one of the 

most preventable causes of reproductive disease, the scope of this problem has not been well 

defined and there have been only limited attempts at concerted research efforts to use biomarkers 

to assess cumulative exposures for all substances linked to developmental disorders.  So the 

question to consider is: Are the substances that are currently known to have effective biomarkers 

likely to be the ones that will be the dominant contributors to this disease endpoint? 

There has been recent concern that a signature metabolic impairment or "biomarker" in 

autistic children strongly suggests that these children would be susceptible to the harmful effects 

of mercury and other toxic chemical exposures (Parker et al. 2004). To address this issue, the 

CDC conducted its own epidemiologic study and then convened a panel of the Institute of 

Medicine (IOM) of the National Academy of Sciences to review the issue independently. On 

May 17, 2004, the IOM published its final report on the possible link between thimerosal and 

autism and concluded that neither the mercury-based vaccine preservative thimerosal nor the 

measles-mumps-rubella (MMR) vaccine are associated with autism (IOM 2004).  But these 
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findings remain controversial and biomarkers could play a role in further confirming or 

challenging this finding.  

Attention Deficit Hyperactivity Disorder (ADHD)- The causes of ADHD are currently not 

known.  It appears to involve both genetic and environmental components.   Possible causes of 

ADHD include physical trauma to the brain, problems during pregnancy or delivery, genetic 

abnormalities, and differences in brain structure (NIMH 2005) in addition or in concert with 

environmental exposures.  There is some evidence that environmental exposures can cause 

problems with behavior and attention similar to those seen in children with ADHD.  However, 

there is little evidence that environmental exposures clearly cause ADHD.  For example, many 

human studies demonstrate that children with elevated lead levels have problems with behavior, 

impulsivity, and concentration.  Several individual case studies suggest that lead exposure may 

be linked with ADHD.  But these studies do not clearly show that lead exposure causes ADHD.  

Similarly, several human studies suggest that children exposed to methylmercury have an 

increased risk of behavioral problems.  However, this finding is controversial.  Not all studies 

support this association (NRC 2000).  

Delinquency- Lead exposure has been associated with increased risk for antisocial and 

delinquent behavior, and the effect follows a developmental course (Needleman et al. 1996). 

This association links elevated bone lead concentrations and the risk of being arrested for 

criminal behavior. The underlying causes for this association are not certain. One possibility is 

that lead interferes with impulse control and that people who have a harder time controlling 

impulses are more likely to engage in criminal behavior. Another possibility arises from lead's 

well-established impact on cognitive function and classroom performance.  

 

 22 
 



 
 
 
Endocrine Disruptors – An Ecological Point of View 

Background 

Ecosystems may offer sentinel effects with respect to ultimate human outcomes and may 

offer an improved understanding of the relationship between multiple sources of numerous 

contaminants, and the myriad of effects they can produce.  Certain contaminants, because of 

their environmental persistence and slow degradation, are dispersed widely in the environment. 

Ideally, a biomarker should discriminate among populations from various regions and account 

for this widespread dispersion.  There is ample evidence of persistent organic pollutants (POPs), 

such as PCBs, in organisms from developed countries.  There is also evidence of food chain 

accumulation from animals and contaminated media in remote ecosystems (Figure 4). Marine 

animals and fish are contaminated with PCBs, organochlorine (OC) pesticides, and heavy metals 

in the Canadian Arctic (Muir et al. 1990), while in a Himalayan snowpit, there are organic 

compounds indicative of petroleum residues such as automobile and diesel exhaust (Xie et al. 

2000).  In the Puget Sound and North Pacific Ocean Harbor, PCBs have been detected in seals, 

sockeye salmon, and albatross (Ross 2004).  Anthropogenic chemicals may spread throughout 

the environment through ingestion of migrating prey (Ross 2004), direct uptake, the transport of 

volatile chemicals through the atmosphere, or the transport of ionic and polar compounds 

dissolved in water (Ross 2004). 

 

Ecosystem Exposure to Multiple Contaminants 

Environments are often subject to exposure from multiple contaminants.   Ideally, suites 

of biomarkers could be used to identify the many chemicals present.  In many field studies, 
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aquatic organisms have been exposed to a complex mixture of organochlorines, heavy metals, 

and other various contaminants (Kuzyk et al. 2003).  Ecosystem contamination as a result of 

multiple chemicals affects a species differently than contamination by a single chemical. The 

effects of mixtures usually exceed those of the most active constituents alone (Faust et al. 2004).  

For example, in a study assessing the effects of cadmium and zinc on rainbow trout, an exposure 

to a mixture of the metals resulted in a greater biological response than from exposure to each 

individual metal (Lange 2002). 

Contaminants affect the biota throughout an ecosystem in different ways and can elicit 

various effects, each of which may be detected by a biomarker. In one case, marine gastropods 

were exposed to multiple organotins such as tributyltin (TBT) and triphenyltin (TPT) and, as a 

result, the organisms suffered genotoxicity, inhibition of ATP synthesis, and inhibition of CYP 

enzymes (Fent 2004).  The responses to the same contamination are often species-specific in 

organisms ranging from bacteria and green algae (Ma et al. 2004) to fish (Lemly 1997). 

Effects of contamination are not only species-specific, but can vary according to specific 

chemical interactions as well. Timing and mode of exposure of pollutants, compound toxicity, 

and age of subjected organisms (Figure 6) are factors responsible for differential sensitivity to  

chemicals across species (Ottinger et al. 2005).  In a study examining the toxicity of arsenic and 

cadmium, the metals were found to cause different toxic interactions depending on the sequence 

of the exposure (Hochadel and Waalkes 1997). The interactions among contaminants may 

substantially add, suppress, or multiply the effects of single components. 
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Ecosystem Biomarkers 

Biomarkers are quantitative measures of the biological response of an organism to a 

chemical and can often be more valuable to environmental assessment than chemical analysis.  

Biomarkers reflect the concentration of contaminant that is biologically available, giving a true 

sense of how much of the contaminant is affecting the biota.  Biomarker monitoring is often less 

expensive and more effective than using traditional chemical analysis.  The biological responses 

of organisms to stressors are long-lasting and biomarkers can reveal episodes of contamination 

that intermittent chemical monitoring would miss (Handy et al. 2003).  

Historically, biomarkers have been used to identify contaminated areas and potential 

stressors (Adams 2003; Adams et al. 2001), but are currently being incorporated into the 

regulatory framework with varying degrees of success.  Scientists offer differing solutions using 

biomarkers in environmental risk assessment.  Adams (Adams 2003; Adams et al. 2001) 

recommends that an experimental framework of biomarker studies should be developed that 

applies to each situation and that this general framework should conform to the basic guidelines 

suggested in the Framework for Ecological Assessment (USEPA 2005a).  The generalized field-

biomonitoring framework consists of a weight of evidence approach, applying line of evidence at 

several different levels of biological organization.  The appropriate biomarker would then be 

selected based on the information available (Adams et al. 2001).  Adams, et al. (Adams et al. 

2001) also recommend the identification of modifying factors that influence the interpretation of 

biomarker responses to stresses.  Handy et al. (Handy et al. 2003) believe that the major 

drawback of biomarkers is the temporal and spatial variability between biological responses.  To 

overcome the variability, Handy et al. recommend careful selection of reference sites, suites of 

biomarkers for multivariate analysis, and the introduction of sentinel organisms to calibrate the 
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temporal shift. 

 

SUMMARY AND RECOMMENDATIONS 

In the discussion above, two focus points for were identified for evaluating the 

capabilities of biomonitoring data – (a) under what circumstances can biomarkers be used to 

disaggregate disease burden into specific risk factors and (b) when and how can biomarkers be 

used to infer the source and magnitude of exposure among a set of competing sources and 

pathways?  In the following paragraphs, the case studies above, as well as information in the 

literature on the availability and use of biomarkers, are used to evaluate the capabilities of 

biomarkers to address these two focus points for cumulative risk assessments.   

The Use of Biomarkers to Disaggregate Disease Burden into Specific Risk Factors 

The use of biomarkers to disaggregate disease burden into specific risk factors is an 

extension of classical epidemiological methods with biomarkers used in place of, or together 

with, other classification factors.  Here the role of biomarkers is to improve resolution in 

classifying observed disease occurrence by providing factors that are more explicitly causative or 

explanatory.  The greatest opportunity here is learning to integrate markers of exposure with 

markers of effect and markers of susceptibility. 

Some existing studies have demonstrated the clear advantage of biomarkers for sorting 

out important risk factors, but much remains to be done.  For example with lead and mercury, the 

blood levels serve as biomarkers of exposure that have been important as risk factors for disease. 

These risk factors are sufficiently reliable that biomonitoring for lead and mercury have shaped 

prevention strategies, helped susceptible subpopulations, and improved the scientific basis for 
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health risk estimates. For neurological effects, blood lead measurements have been used both as 

markers of exposure and markers of effect because the harm to the neurological system depends 

on the amount of circulating lead in the body. Cotinine has proved useful as a biomarker of 

exposure to environmental tobacco smoke (ETS) but is not optimum as a biomarker of effect 

because cotinine is a metabolite of nicotine subject to interindividual variability in measured 

concentration.  To date most efforts to use biomarkers to improve the links among disease 

patterns and risk factors have been haphazard and opportunistic. For the example substances as 

well as the broader range of substances having available biomarkers, there is need for a 

systematic effort to evaluate whether and how links among exposure and other risk factors can 

be better tracked to disease burden. 

 

 

Use of Biomarkers to Infer Contributions from Different Sources and Pathways 

 

Most environmental pollutants enter human and ecological receptors from multiple 

sources and through competing pathways.  Effective policies require cumulative risk assessments 

that not only provide reliable estimates of cumulative intake but also identify the important 

sources and exposure pathways contributing to this intake.  It is common in most risk 

assessments that this calculation is made in the forward direction—from source to dose.  But the 

increasing availability of population-scale biomonitoring data makes in possible to work in the 

opposite direction from dose to source.  There have been some preliminary efforts to use 

biomarkers to infer sources and pathways, but such efforts have been limited.  There remains the 
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need for efforts to articulate and evaluate strategies for systematically using biomarkers to infer 

source and pathway.   

 

The case studies above provide preliminary examples of when and how biomarkers can 

be used to infer the source and magnitude of exposure among a set of competing sources and 

pathways.  The answer to this question is chemical specific and relates to how well the 

biomarker matches the characteristics of an “ideal” biomarker –  in particular ease of collection 

and persistence.  For example, the dioxins and PCBs, which are persistent in biological 

organisms, facilitate biomonitoring that has enabled scientists and public health professionals to 

track population trends and to evaluate progress in reducing exposures.  To some extent, 

biomarkers of dioxin-like substances have also been useful in demonstrating for these 

compounds the relative importance of global versus regional and local source as well as 

important contributions through food rather than inhalation pathways.  In contrast, biomarkers of 

a compound that is metabolized relatively quickly provide only limited opportunity for inferring 

sources or exposure pathways. Biomarkers for OP pesticides are somewhere between the 

extremes of dioxin-like compounds and rapidly metabolized compounds in providing an 

opportunity to explore source and pathway contributions. OP pesticides can be measured directly 

in blood (and possibly in urine) and produce both generic metabolites – dialkyl phosphates –  and 

organophosphate-specific (or near-specific) biomarkers such as TCPy.  The use of these three 

biomarkers in combination provides a better opportunity to disaggregate both source and 

pathway contributions than is possible for a rapidly metabolized compound. However, little has 

been done to explore the capabilities and limitations of using multiple biomarkers in combination 

to infer exposure attributes.  Important goals for near term biomarker research must include 
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systematic efforts across a broad range of chemical substances to determine the reliability of 

biomarkers to infer the source and exposure pathway in cumulative risk assessments.  This may 

be done most effectively through the simultaneous collection of biomarker data of various types 

on the same individuals, populations, or ecosystems. 

In conclusion, the public health goal of quantifying the burden of disease that is 

attributable to the cumulative impacts of environmental exposure remains elusive.  However, the 

steady progress in development of biomarkers of exposure, susceptibility, and effect, coupled 

with emerging technologies for environmental monitoring, offer unprecedented opportunities to 

examine and prevent cumulative health risks and to redefine approaches to environmental 

protection.  
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Table 1.  A Comparison of Some Biomarkers to an Ideal Biomarker 
 
Biomarker Ideal 

Biomarker K 
Cotinine Blood Lead  Serum Lead Bone Lead 

      
Associated 
Exposure  

Compound K Nicotine Lead Lead Lead 

      
Type 
Exposure Yes yes Yes,  Yes Yes 
Effect Yes No Indicative, not 

definitive 
Yes  

Susceptibility Indicates 
specific 
response to 
compound K 

No No No No 

      
Evaluation Characteristics 
      
Persistence Yes No No No Yes 
      
Ease of Collection Readily 

Collected 
Readily collected Readily collected Somewhat 

Difficult 
Difficult 

      
Link to Disease Direct 

Between 
Exposure, 
Source, and 
Disease 

Unclear.  Cotinine 
is a marker for 
smoking, but has 
not been 
implicated as a 
causative agent. 

Established link 
between exposure 
to lead and 
neurological 
disease 

Established 
link between 
exposure to 
lead and 
neurological 
disease 

No direct link.  
Endogenous 
source of lead 
from bone may 
be important 

      
Large Sample  Large 

percentage of 
population 
carries 
biomarker 

Those who smoke 
or are exposed to 
ETS. 

Yes Yes Yes 

      
Broad Spatial 
Distribution 

Occurs across 
racial and 
geographic 
boundaries 

Those who smoke 
or are exposed to 
ETS. 

Yes Yes Yes 

      
Appropriate 
Temporal 
Occurrence 

Occurs over 
time scales 
associated with 
progression of 
disease 

No, short half life 
for carcinogenesis 
endpoint 

No, recent past 
exposure 

No, recent 
past exposure 

Yes 

      
Sensitivity Displays dose 

response 
Unclear.  Some indications. Some 

indications. 
Not known.  
Few studies. 

      
Parent Compound Directly 

measures K 
Closely associates 
with nicotine 

Direct measure of 
lead 

Direct 
measure of 
lead 

Direct measure 
of lead 
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Table 2.  Example Evaluation for the Outcome - Asthma 

 Biomarkers and Health Metrics Associated With Asthma 

Characteristics of an Ideal 
Biomarker 

Immunoglobulin E 
[IgE] RAST-
positivity 

T-helper type 
2 [Th2] 
cytokine 
pattern 
predominance 

Skin Rashes Food Allergies 

Persistence Good Good Irregular Good 

     

Ease of Collection Difficult Difficult Clinical Evaluation Clinical Evaluation 

     

Link to Disease Possibly Possibly Possibly Possibly 

     

Large Sample  Yes Yes Unknown Unknown 

     

Broad Spatial Distribution Yes Yes Unknown Unknown 

     

Appropriate Temporal 
Occurrence 

Yes Yes Possibly Possibly 

     

Sensitivity No No Possibly Possibly 

     

Parent Compound N/A N/A N/A N/A 
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Figure Legends 
 
Figure 1.  Framework for Biomonitoring 

Figure 2.  Framework Applied to Asthma Case Study 
 
Figure 3.  Framework Applied to Neurobehavioral Endpoints Case Study 
 
Figure 4.  Framework Applied to Endocrine Disruption Endpoints Case Study.  The 

primary impact here is upon ecological communities. 
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Figure 1  
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Figure 2 
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